
1

Optimizing MySQL Usage

Rene Churchill
WherezIt.com &

AstuteComputing.com

rene@astutecomputing.com

My goal here is to throw out enough different ideas so that
everybody hears at least one or two things that may be
useful for them.

2

Where are the bottlenecks?

First Step: Figure out where the problems are...

You can't improve what you can't
measure.

Basis of ISO 9000 improvement process.

Go for the low hanging fruit but do it
intelligently. If the slow query is only run
as part of the monthly statistics, who
cares? Speed up the queries that the
public sees first.

3

/etc/my.cnf

[mysqld]

log-slow-queries = slow.log

long_query_time = 1

log-queries-not-using-indexes

Prior to MySQL 5.1.21, the minimum value of
long_query_time is 1, and the value for this variable must
be an integer.

Beginning with MySQL 5.1.21, the minimum is 0, and a
resolution of microseconds is supported when logging to a
file. However, the microseconds part is ignored and only
integer values are written when logging to tables.

4

Old / Slow Hardware

Don't have to upgrade MySQL
Use slower hardware.

My development server:
(recently retired) 500Mhz P3 Pentium

Sometimes you can't modify the customer's environment
and upgrade MySQL just to make your life easier.

Replicate their environment on your development
server. Use an old server to slow things down.

5

Counting Queries

10,000 fast queries are worse than 1 slower one

Reducing the query count generally requires refactoring /
rewriting the function that is doing all of the queries.

Outside the scope of this talk

6

header.php

if (!$Timer_Start) {
list($Timer_uStart, $Timer_Start) = explode(" ",microtime());

}

$QUERY_COUNT = 0;
$QUERY_TIME = 0;
$DEBUG_MYSQL = 0;

7

mysql_class.php
function Query ($query) {

global $QUERY_COUNT, $QUERY_TIME, $DEBUG_MYSQL;
$QUERY_COUNT++;

// Start the timer so we can track query times
list($Timer_uStart, $Timer_Start) = explode(" ",microtime());

$this->result = @mysql_query($query, $this->id) or
MySQL_ErrorMsg ("Unable to perform query: $query");

list($Timer_uEnd, $Timer_End) = explode(" ",microtime());
$QUERY_TIME += ($Timer_End+$Timer_uEnd) - ($Timer_Start+$Timer_uStart);
if ($DEBUG_MYSQL) {

$tmp = ($Timer_End+$Timer_uEnd) - ($Timer_Start+$Timer_uStart);
$elapsed = sprintf("%.3f",$tmp);
print("\n\n<pre>\n$query\nElapsed Time: $elapsed\n\n");
$stack_trace = debug_backtrace();
foreach ($stack_trace as $tmp) {

print"Function: ".$tmp['function']."\nLine: ".
$tmp['line']."\nFile: ".$tmp['file']."\n";

}
print("</pre>\n");

}
}

8

footer.php

global $Timer_Start, $Timer_uStart, $QUERY_COUNT, $QUERY_TIME;

list($Timer_uEnd, $Timer_End) = explode(" ",microtime());
$tmp = ($Timer_End + $Timer_uEnd) - ($Timer_Start +
$Timer_uStart);
$elapsed = sprintf("%.3f",$tmp);
print("<p class=\"gray_text\">Page generated in: $elapsed
seconds\n");
$query_sec = sprintf("%.3f", $QUERY_TIME);
print("
Query Count: $QUERY_COUNT Query Time: $query_sec\n");

9

Pick a query to optimize
SELECT DISTINCT l.listing_id,

IF(l.created_on > DATE_SUB(NOW(), INTERVAL 3 DAY),1,0) AS NewAd
FROM wherezit_cache.listing_cache_ac0a1d5d9c321268da6de781fdcf90 AS lc,

Listings as l,
Listing_photo_xref AS lpx,
Category_listing_address_xref AS clax

WHERE lc.listing_id = l.listing_id
AND l.listing_type IN ('classified','classified_home',

'classified_vehicle','classified_job')
AND l.status = 'Ok'
AND l.valid_thru >= NOW()
AND lpx.listing_id = l.listing_id
AND l.listing_id = clax.listing_id

ORDER BY NewAd DESC, RAND()
LIMIT 150

Elapsed Time: 0.823

Function: Query
Line: 1830
File: /home/wherezit/www/html/lib/listing_classified_class.php
Function: DisplayRecentRandomAds
Line: 46
File: /home/wherezit/www/html/index.php

10

What the heck is happening?

Second step: Figure out what is going on....

11

EXPLAIN is your friend

Running EXPLAIN on a query shows how MySQL is deciding
which indexes to use in a SELECT query.

http://dev.mysql.com/doc/refman/5.1/en/using-explain.html

http://www.mysqlperformanceblog.com/

12

[wherezit]> EXPLAIN SELECT listing_id
FROM Listings

WHERE created_on > 20090501
AND listing_type = 'news'
AND listing_id > 300000 \G

********************* 1. row *********************
id: 1

select_type: SIMPLE
table: Listings
type: range

possible_keys: PRIMARY,type_created
key: type_created

key_len: 11
ref: NULL

rows: 1020
Extra: Using where

1 row in set (0.00 sec)

\G displays the results vertically instead of horizontally

13

Fixing the Problem

Last step is to resolve the problem

Test & Measure

Try, try, try again

14

Basic Indexes

Creating Indexes - First step towards performance

Index columns in your WHERE clause first

DO NOT index everything - Read / Write trade-off

15

String Indexes

Beware LIKE clauses

Index can help WHERE name LIKE 'John%'

Cannot help 'WHERE name LIKE '%reggie%'
Avoid these queries if possible

Use the ENUM column type
instead of CHAR or VARCHAR

16

More Interesting Problems

Multiple table JOINs

Only one index per table is used

Indexes should link the various tables together

Relational databases are all about linking the data in
multiple tables together, it's the whole point, otherwise we'd
all be using a single large flat-file to store all of our data.

EXPLAIN will show the order in which the tables are joined
together.

17

A More Interesting Query
SELECT DISTINCT l.listing_id,

IF(l.created_on > DATE_SUB(NOW(), INTERVAL 3 DAY),1,0) AS NewAd
FROM wherezit_cache.listing_cache_ac0a1d5d9c321268da6de781fdcf90 AS lc,

Listings as l,
Listing_photo_xref AS lpx,
Category_listing_address_xref AS clax

WHERE lc.listing_id = l.listing_id
AND l.listing_type IN ('classified','classified_home',

'classified_vehicle','classified_job')
AND l.status = 'Ok'
AND l.valid_thru >= NOW()
AND lpx.listing_id = l.listing_id
AND l.listing_id = clax.listing_id

ORDER BY NewAd DESC, RAND()
LIMIT 150

Elapsed Time: 0.823

Function: Query
Line: 1830
File: /home/wherezit/www/html/lib/listing_classified_class.php
Function: DisplayRecentRandomAds
Line: 46
File: /home/wherezit/www/html/index.php

18

[wherezit]> EXPLAIN <earlier slow SQL query> \G
************************ 1. row ************************

id: 1
select_type: SIMPLE

table: lpx
type: index

possible_keys: listing_id
key: listing_id

key_len: 4
ref: NULL

rows: 46584
Extra: Using index; Using temporary; Using filesort

************************ 2. row ************************
id: 1

select_type: SIMPLE
table: lc
type: ref

possible_keys: listing_id
key: listing_id

key_len: 4
ref: wherezit.lpx.listing_id

rows: 1
Extra: Using index

MySQL joins tables in order. Generally selecting the table
that returns the fewest rows first.

Then linking the appropriate next table based on the
WHERE clause and how the tables are joined together.

Limitations of EXPLAIN syntax, doesn't always get the
order of the tables correct.

19

************************* 3. row **********************
id: 1

select_type: SIMPLE
table: l
type: eq_ref

possible_keys: PRIMARY,type_created
key: PRIMARY

key_len: 4
ref: wherezit_cache.lc.listing_id

rows: 1
Extra: Using where

************************* 4. row **********************
id: 1

select_type: SIMPLE
table: clax
type: ref

possible_keys: listing_id
key: listing_id

key_len: 4
ref: wherezit_cache.lc.listing_id

rows: 1
Extra: Using where; Using index; Distinct

4 rows in set (0.01 sec)

20

Avoid Unecessary Joins

SELECT DISTINCT l.listing_id,
IF(l.created_on > DATE_SUB(NOW(), INTERVAL 3 DAY),1,0) AS NewAd

FROM wherezit_cache.listing_cache_ac0a1d5d9c321268da6de781fdcf90 AS lc,
Listings as l,
Listing_photo_xref AS lpx,
Category_listing_address_xref AS clax

WHERE lc.listing_id = l.listing_id
AND l.listing_type IN ('classified','classified_home',

'classified_vehicle','classified_job')
AND l.status = 'Ok'
AND l.valid_thru >= NOW()
AND lpx.listing_id = l.listing_id
AND l.listing_id = clax.listing_id

ORDER BY NewAd DESC, RAND()
LIMIT 150

Look out for leftovers from previous development.

In this query the clax table is unecessary, no columns from
it are referenced by any other table or in the SELECT
clause.

21

Avoid Unecessary Joins

SELECT DISTINCT l.listing_id,
IF(l.created_on > DATE_SUB(NOW(), INTERVAL 3 DAY),1,0) AS NewAd

FROM wherezit_cache.listing_cache_ac0a1d5d9c321268da6de781fdcf90 AS lc,
Listings as l,
Listing_photo_xref AS lpx,
Category_listing_address_xref AS clax

WHERE lc.listing_id = l.listing_id
AND l.listing_type IN ('classified','classified_home',

'classified_vehicle','classified_job')
AND l.status = 'Ok'
AND l.valid_thru >= NOW()
AND lpx.listing_id = l.listing_id
AND l.listing_id = clax.listing_id

ORDER BY NewAd DESC, RAND()
LIMIT 150

22

Avoid use of tmp tables

[wherezit]> EXPLAIN <earlier slow SQL query> \G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: lpx
type: index

possible_keys: listing_id
key: listing_id

key_len: 4
ref: NULL

rows: 46584
Extra: Using index; Using temporary; Using filesort

Lots of disk I/O is the problem with this.

Generally avoid large sort operations in SQL, these often
trigger the use of tmp tables

However, sometimes MySQL can sort the results faster
than PHP can.

ORDER BY can cause hassles.

23

At least move tmp tables into memory

[wherezit]> show variables like 'tmp_table%';
+----------------+----------+
| Variable_name | Value |
+----------------+----------+
| tmp_table_size | 33554432 |
+----------------+----------+

/etc/my.cnf

[mysqld]
tmp_table_size = 64Mb
max_heap_table_size = 64Mb

tmp_table_size default is 32Mb

Need to check size of max_heap_table_size too, since
MySQL uses the smaller of the two values.

24

Forcing MySQL to use a specific index

Generally avoid doing this
MySQL is pretty good about choosing the right index

SELECT ...
FROM table1 FORCE (index1, index2,...)

SELECT ...
FROM table1 IGNORE (index1, index2,...)

25

Limit your data result set

Providing additional restraints on the query
can greatly speed up the results.

LIMIT only alters the amount of data returned

You must know more about the data
than MySQL.

LIMIT only affects the amount of data returned from the
query, not the amount of information that MySQL has to
handle.

26

Limit your data result set

SELECT DISTINCT l.listing_id,
IF(l.created_on > DATE_SUB(NOW(), INTERVAL 3 DAY),1,0) AS NewAd

FROM wherezit_cache.listing_cache_ac0a1d5d9c321268da6de781fdcf90 AS lc,
Listings as l,
Listing_photo_xref AS lpx

WHERE lc.listing_id = l.listing_id
AND l.listing_type IN ('classified','classified_home',

'classified_vehicle','classified_job')
AND l.status = 'Ok'
AND l.valid_thru >= NOW()
AND l.created_on > DATE_SUB(NOW(), INTERVAL 30 DAY)
AND lpx.listing_id = l.listing_id

ORDER BY NewAd DESC, RAND()
LIMIT 150

Elapsed Time: 0.011

27

[wherezit]> EXPLAIN <query> \G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: l
type: range

possible_keys: PRIMARY,type_created
key: type_created

key_len: 11
ref: NULL
rows: 1103

Extra: Using where; Using temporary; Using filesort
*************************** 2. row ***************************

id: 1
select_type: SIMPLE

table: lc
type: ref

possible_keys: listing_id
key: listing_id

key_len: 4
ref: wherezit.l.listing_id
rows: 1

Extra: Using index; Distinct
*************************** 3. row ***************************

id: 1
select_type: SIMPLE

table: lpx
type: ref

possible_keys: listing_id
key: listing_id

key_len: 4
ref: wherezit_cache.lc.listing_id
rows: 3

Extra: Using where; Using index; Distinct

Note that this query is still using the temporary table &
filesort. The filesort is caused by the ORDER BY clause
but it is faster to let MySQL handle that.

Always test your assumptions

The big change is the number of rows that are selected
from the Listings table - 1103, a much smaller set of data to
work with, thus quicly linked to the other tables and sorted.

28

Other tricks to try

The tips that follow work occasionally,
try them AFTER you have already fidded with indexes

Generally because the gains you can get from some of
these tips is smaller than correctly applying indexes.

29

Sorting outside of MySQL

Occasionally useful, will often remove use of tmp tables

See PHP's usort() function

30

Advanced Indexes

SELECT will answer queries from Indexes alone if possible,
very fast

beware read/write trade-off if adding extra indexes

SELECT COUNT(listing_id)
FROM Listings

WHERE listing_id > 100000
AND listing_id < 300000

31

Avoid use of DISTINCT

Avoid the use of DISTINCT, forces MySQL to do a sort of the
results, often unnecessarily

Use PHP associative arrays instead, sometimes faster.

$max = mysql_num_rows($rslt);
$tmp = array();
for ($i = 0; $i < $max; $i++) {

list($a) = mysql_fetch_row($rslt);
$tmp[$a]++;

}
$distinct_array = array_keys($data);

If you need to throw DISTINCT into the query and you're
not sure why, that's a red flag that you've written the query
incorrectly.

The main thing we're hoping to reduce here is the need for
MySQL to suffer the file I/O of writing the temp file to disk
and then sorting it.

32

Be careful using IN

SELECT *
FROM Listings

WHERE listing_id IN (1,3,5,7,.....)

$query = "SELECT *
FROM Listings

WHERE listing_id IN (".
join(',',$listing_id_array).")";

What happens when $listing_id_array has 100,000 values?

Sometimes the CPU time required to just PARSE the SQL
query becomes signifigant.

This can often bite you when transitioning from test data to
real-world data sets, which tend to be MUCH larger.

33

Use Multiple Queries

Sometimes it is better to break a query into multiple steps.

Instead, only get the ID values,
then fetch the bulk of the data later.

This generally only replies when you are doing both a
complex query and fetching a large amount of data from
each row.

BLOBs and TEXT column types can store really large
chunks of data. Things like storing images inside the
database.

34

Store text fields in separate table

Easier to locate rows when records are a constant length

char vs varchar usually the cluprit

text/blob columns are the worst,
consider storing these in a separate table.

This is an expansion on using multiple queries. Put all of
the short data elements into one table, these tend to be
used in the WHERE clause to filter the results.

Then put the big chunks of data in another table and fetch
those later.

35

SQL query cache

Must know your data patterns before using

~15% overhead to queries

Reads must outnumber Writes
by several orders of magnitude

Any write to a table deletes all cached queries against that
table.

Deadly when dealing with large joins since a write to any of
the tables in the query will clear the cache.

36

Is SQL Query Cache Enabled

[wherezit]> show variables like 'query%';
+------------------------------+----------+
| Variable_name | Value |
+------------------------------+----------+
query_alloc_block_size	8192
query_cache_limit	1048576
query_cache_min_res_unit	4096
query_cache_size	67108864
query_cache_type	ON
query_cache_wlock_invalidate	OFF
query_prealloc_size	8192
+------------------------------+----------+

Must have both query_cache_type = ON or DEMAND with
query_cache_size > 0 to enable the query cache.

query_cache_type = ON means that all SELECT queries
are cached.

query_cache_type = DEMAND means the hint
SQL_CACHE is required to cache it.

37

Enabling Query Cache

[wherezit]> SET GLOBAL query_cache_size = 64000000;
[wherezit]> SET GLOBAL query_cache_type = 'ON';

[wherezit]> SET SESSION query_cache_type = 'OFF';

Note that these variables will disappear when the MySQL
process restarts, make changes to /etc/my.cnf to make
them permenant.

Setting these variables requires the SUPER privilege as
the effect is server-wide.

Note that the memory allocated is in a large chunk,
preventing anything else on the system from using that
memory. Possible repercussions w/ Apache or other
processes.

38

Measuring cache performance

[wherezit]> show status like 'qc%';
+-------------------------+----------+
| Variable_name | Value |
+-------------------------+----------+
Qcache_free_blocks	1
Qcache_free_memory	59043120
Qcache_hits	36877980
Qcache_inserts	32656566
Qcache_lowmem_prunes	211546
Qcache_not_cached	6043905
Qcache_queries_in_cache	4194
Qcache_total_blocks	8481
+-------------------------+----------+

free_memory is large, cache is not using all of the memory
allocated.

hits is not a high multipe of inserts, cache not working very
efficiently.

39

Resetting the cache

[wherezit]> flush status;

[wherezit]> reset query cache;

flush status just resets the counts, reset query cache frees
the memory and restarts the cache anew.

40

Tweak other server settings

MySQL Tuner - http://wiki.mysqltuner.com/MySQLTuner

Add memory to server

Use top and/or vmstat to watch disk accesses

41

Throw hardware at the problem

Buy/lease faster hardware
(cost of time vs cost of hardware)

Cloud computing?

High speed disk drives - Only in special circumstances

42

Questions?

